2023
Farnsworth, A., Lo, Y.T.E., Valdes, P.J. et al. 2023. Climate extremes likely to drive land mammal extinction during next supercontinent assembly. Nature Geoscience. https://doi.org/10.1038/s41561-023-01259-3
Annor, T., Ackon, A.T., James, R. et al. 2023. Heat band, rain band and heat low migration: process-based evaluation of some CMIP6 GCMs over West Africa. Climate Dynamics. https://doi.org/10.1007/s00382-023-06930-4
Bharwani, S., Daron, J., Siame, G., Jones, R. G., McClure, A., Jack, C., Koelle, B., Grobusch, L., Zhang, M., Mangena, B., Janes, T., Nchito, W., James, R. et al. (2023). Supporting Climate-Resilient Urban Planning: 10 Lessons from Cities in Southern Africa. FRACTAL project.
Lo, Y. T. E., Mitchell, D. M. et al. 2023. Optimal heat stress metric for modelling heat-related mortality varies from country to country. The International Journal of Climatology. https://doi.org/10.1002/joc.8160
Craig, A., Hutton, C., Musa, F. and Sheffield, J. 2023. Bonding, bridging and linking social capital combinations for food access; A gendered case study exploring temporal differences in southern Malawi. Journal of Rural Studies. https://doi.org/10.1016/j.jrurstud.2023.103039
Christidis, N., Mitchell, D. M. & Stott, P.A. 2023. Rapidly increasing likelihood of exceeding 50 °C in parts of the Mediterranean and the Middle East due to human influence. npj Climate Atmospheric Science. https://doi.org/10.1038/s41612-023-00377-4
Vosper, E., Watson, P. A. G., Harris, L., McRae, A., Santos-Rodriguez, R., Aitchison, L. & Mitchell, D. M. 2023. Deep Learning for Downscaling Tropical Cyclone Rainfall to Hazard-Relevant Spatial Scales. JGR Atmospheres. https://doi.org/10.1029/2022JD038163
Craig, A., Hutton, C., Lewis, L. A., Musa, F. B. & Sheffield, J. 2023. Linking household access to food and social capital typologies in Phalombe District, Malawi. Sustainability Science. https://doi.org/10.1007/s11625-023-01329-w
Chan, J., MacNeill, S. J., Stuart, B., Lo, Y. T. E., Roberts, A., Mitchell, D. M. & Ridd, M. J. 2023. Do temperature changes cause eczema flares? An English cohort study. Clinical and Experimental Dermatology. https://doi.org/10.1093/ced/llad147
Thompson, V., Mitchell, D. M., Hegerl, G.C. , Collins, M., Leach, N., & Slingo, J. 2023 . The most at-risk regions in the world for high-impact heatwaves. Nature Communications. https://doi.org/10.1038/s41467-023-37554-1
Hall, R., Mitchell, D. M., Seviour, W. J. M. & Wright., C. J. 2023. Surface hazards in north-west Europe following sudden stratospheric warming events. ERL. Accepted. https://doi.org/10.1088/1748-9326/acd0c3.
Mwanthi, A.M., Mutemi, J.N., Dyer, E., James, R. et al. 2023. Representation of land–atmosphere coupling processes over Africa in coupled model intercomparison project Phase 6. Climate Dynamics. https://doi.org/10.1007/s00382-023-06710-0
Bloomfield H.C.,…James R. (7th) et al. 2023. Co-occurring wintertime flooding and extreme wind over Europe, from daily to seasonal timescales. Weather and Climate Extremes. https://doi.org/10.1016/j.wace.2023.100550
Lo, Y. T. E., Mitchell, D. M., Watson, P. A. G., Screen, J. A. 2023. Changes in Winter Temperature Extremes From Future Arctic Sea-Ice Loss and Ocean Warming. Geophysical Research Letters. https://doi.org/10.1029/2022GL102542
2022
Jenkins, K., Kennedy-Asser, A. T., Andrews, O. D. & Lo, Y. T. E. 2022. Updated projections of UK heat-related mortality using policy-relevant global warming levels and socio-economic scenarios. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac9cf3
Lino, O.,…James, R. (4th) et al. 2022. Characteristics of the Turkana low-level jet stream and the associated rainfall in CMIP6 models. Climate Dynamics. https://doi.org/10.1007/s00382-022-06499-4
Watson, P. A. G. 2022. Machine learning applications for weather and climate need greater focus on extremes. Environmental Research Letters. https://doi.org/10.1029/2022GL099299. In press.
Adloff, M., Singer, M., MacLeod, D.A., Michaelides, K., Mehrnegar, N., Hansford, E., Funk, C. & Mitchell, D. M. 2022. Sustained water storage in Horn of Africa drylands dominated by seasonal rainfall extremes. Geophysical Research Letters. https://doi.org/10.1029/2022GL099299
Otero, N., Martius, O., Allen, S., Bloomfield, H. & Schaefli, B. 2022. Characterizing renewable energy compound events across Europe using a logistic regression-based approach. Meteorological Applications. https://doi.org/10.1002/met.2089
Barimalala, R., James, R., Munday, C. et al. 2022. Representation of the Mozambique channel trough and its link to southern African rainfall in CMIP6 models. Climate Dynamics. https://doi.org/10.1007/s00382-022-06480-1
Kuete, G., Mba, W.P., James, R. et al. 2022. How do coupled models represent the African Easterly Jets and their associated dynamics over Central Africa during the September–November rainy season?. Climate Dynamics. https://doi.org/10.1007/s00382-022-06467-y
Mitchell, D. M. & Lo, Y. T. E. 2022. Downplaying the catastrophic health impact of heatwaves costs lives. BMJ. https://doi.org/10.1136/bmj.o1940
Taguela, T.N.,…James, R. (4th) et al. 2022. Low-level circulation over Central Equatorial Africa as simulated from CMIP5 to CMIP6 models. Climate Dynamics. https://doi.org/10.1007/s00382-022-06411-0
Otto, F.E.L.,…James, R. (7th) et al. 2022. Causality and the fate of climate litigation: The role of the social superstructure narrative. Global Policy. https://doi.org/10.1111/1758-5899.13113
Craig, M.,…Bloomfield, H. (6th) et al. 2022. Overcoming the disconnect between energy system and climate modeling. Joule. https://doi.org/10.1016/j.joule.2022.05.010
Cotterill, D., Pope, J. & Stott, P. 2022. Future extension of the UK summer and its impact on autumn precipitation. Climate Dynamics. https://doi.org/10.1007/s00382-022-06403-0
Mattu, K., Bloomfield, H., Thomas, S., Martínez-Alvarado, O. & Rodríguez-Hernández, O. 2022. The impact of tropical cyclones on potential offshore wind farms. Energy for Sustainable Development. https://doi.org/10.1016/j.esd.2022.02.005
Domeisen, D.,…Bloomfield, H. (11th) et al. 2022. Advances in the Subseasonal Prediction of Extreme Events: Relevant Case Studies across the Globe. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-20-0221.1
Freychet, N., Hegerl, G., Lord, N., Lo, Y. T. E., Mitchell, D. M. & Collins, M. 2022. Robust increase in population exposure to heat stress with increasing global warming. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac71b9
Dessai, S., Fowler, H., Hall, J. & Mitchell, D. M. 2022. UK Climate Risk Assessment and Management. Climate Risk Management. https://doi.org/10.1016/j.crm.2022.100440. In press.
Mitchell, D. M. et al. 2022. Increased population exposure to Amphan-scale cyclones under future climates. Climate Resilience and Sustainability. https://doi.org/10.1002/cli2.36
Thompson, V., Kennedy-Asser, A., Vosper, E., Lo, Y. T. E., Huntingford, C., Andrews, O., Collins, A., Hegerl, G. & Mitchell, D. M. 2022. The 2021 western North America heat wave among the most extreme events ever recorded globally. Sciences Advances. https://doi.org/10.1126/sciadv.abm6860
Nijhawan, A.,…Lo, Y. T. E. (5th) et al. 2022. Assessing the climate resilience of community-managed water supplies in Ethiopia and Nepal. Water. https://doi.org/10.3390/w14081293
Thomas, J., Stone, E., Mitchell, D. M., Seviour, W., Barnes, C., Bloomfield, H., Crook, J., Jones, H. & MacLeod, C. 2022. Organising a collaborative online hackathon for cutting-edge climate research. Weather. https://doi.org/10.1002/wea.4199
Mitchell, D. M., Stone, E., et al. 2022. The Bristol CMIP6 Data Hackathon. Weather. https://doi.org/10.1002/wea.4161
Kennedy-Asser, A., Owen, G., Griffith, G., Andrews, O., Lo, Y. T. E., Mitchell, D. M., Jenkins, K. & Warren, R. 2022. Projected risks associated with heat stress in the UK Climate Projections (UKCP18). Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac541a
Lo, Y. T. E., Mitchell, D. M., Thompson, R., O’Connell, E. & Gasparrini, A. 2022. Estimating heat-related mortality in near real time for public health. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac4cf4
Perkins-Kirkpatrick, S., Stone, D., Mitchell, D. M., Rosier, S., King, D., Lo, Y. T. E., Pastor-Paz, J., Frame, D. & Wehner, M. 2022. On the attribution of the impacts of extreme weather events to anthropogenic climate change. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac44c8
Falloon, P., Bebber, D., Dalin, C., Ingram, J., Mitchell, D. M., Hartley, T., Johnes, P., Newbold, T., Challinor, A. & Finch, J. 2022. What do changing weather and climate shocks and stresses mean for the UK food system? Environmental Research Letters. https://doi.org/10.5194/gmd-2021-394. Preprint
Hall, R., Mitchell, D. M., Seviour, W. & Wright, C. 2022. How Well Are Sudden Stratospheric Warming Surface Impacts Captured in CMIP6 Climate Models? JGR Atmospheres. https://doi.org/10.5194/gmd-2021-394
Hitchcock, P.,…Mitchell, D. M. (7th) et al. 2022. Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): A Protocol for Investigating the Role of the Stratospheric Polar Vortex in Subseasonal to Seasonal Forecasts. Geoscientific Model Development. https://doi.org/10.5194/gmd-2021-394. Preprint.
2021
Mitchell, D. M., Scott, R., Seviour, W., Thomson, S., Waugh, D., Teanby, N. & Ball, E. 2021. Polar vortices in planetary atmospheres. Review of Geophysics. https://doi.org/10.1029/2020RG000723
Simpson, C., Hosking, J., Mitchell, D. M., Betts, R. & Shuckburgh, E. 2021. Regional disparities and seasonal differences in climate risk to rice labour. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac3288
Zhang, M., Mitchell, D. & Thompson, V. 2021. Violence and mental health are likely to get worse in a warming world. Conversation.
Ball, E., Mitchell, D. M., Seviour, W., Thomson, S. & Vallis, G. 2021. The roles of latent heating and dust in the structure and variability of the northern Martian polar vortex. The Planetary Science Journal. https://doi.org/10.3847/PSJ/ac1ba2
Cotterill, D., Stott, P., Christidis, N., T. & Kendon, E. 2021. Increase in the frequency of extreme daily precipitation in the United Kingdom in autumn. Weather and Climate Extremes. https://doi.org/10.1016/j.wace.2021.100340
Lo, Y. T. E. & Mitchell, D. M. 2021. How will climate change affect UK heatwaves? Weather. https://doi.org/10.1002/wea.4061
Howard, G.,…Lo, Y. T. E. (8th) et al. 2021. The how tough is WASH framework for assessing the climate resilience of water and sanitation. NPJ Clean Water. https://doi.org/10.1038/s41545-021-00130-5
Funk. C, Hoell, A. & Mitchell, D. M. 2021. Editorial: Climate Science Advances to Address 21st Century Weather and Climate Extremes. Frontiers in Climate. https://doi.org/10.3389/fclim.2021.680291
Hall, R., Mitchell, D. M., Seviour, W. & Wright, C. 2021. Persistent model biases in the CMIP6 representation of stratospheric polar vortex variability. JGR: Atmospheres. https://doi.org/10.1029/2021JD034759
Senior, C.A.,…James, R. (22nd) et al. 2021. Convection-Permitting Regional Climate Change Simulations for Understanding Future Climate and Informing Decision-Making in Africa. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-20-0020.1
Mitchell, D. M. 2021. Climate attribution of heat mortality. Nature Climate Change. https://www.nature.com/articles/s41558-021-01049-y
Wright, C., Hall, R., Banyard, T., Hindley, N., Mitchell, D. M. & Seviour, W. 2021. Dynamical and Surface Impacts of the January 2021 Sudden Stratospheric Warming in Novel Aeolus Wind Observations, MLS and ERA5. Weather and Climate Dynamics. https://doi.org/10.5194/wcd-2021-16
Bevacqua, E., Shepherd, T., Watson, P., Sparrow, S., Wallom, D. & Mitchell, D. M. 2021. Larger spatial footprint of wintertime total precipitation extremes in a warmer climate. Geophysical Research Letters. https://doi.org/10.1029/2020GL091990
Moseley, G., Edwards, R., Lord, N., Spotl, C. & Cheng, H. 2021. Speleothem record of mild and wet mid-Pleistocene climate in northeast Greenland. Science Advances. https://doi.org/10.1126/sciadv.abe1260
Siderius, C.,…James, R. (13th) et al. 2021. Climate variability affects water-energy-food infrastructure performance in East Africa. One Earth. https://doi.org/10.1016/j.oneear.2021.02.009
Kolusu, S.R.,…James, R. (6th) et al. 2021. Sensitivity of projected climate impacts to climate model weighting: multi-sector analysis in eastern Africa. Climatic Change. https://doi.org/10.1007/s10584-021-02991-8
Freychet, N., Hegerl, G., Mitchell, D. M. & Collins, M. 2021. Future changes in the frequency of temperature extremes may be underestimated in tropical and subtropical regions. Communications Earth & Environment. https://doi.org/10.1038/s43247-021-00094-x
Sharkey, J., Teanby, N., Sylvester, M., Mitchell, D. M., Seviour, W., Nixon, C. & Irwin, P. 2020. Potential vorticity structure of Titan’s polar vortices from Cassini CIRS observations. Icarus. https://doi.org/10.1016/j.icarus.2020.114030
2020
Hall, R., Mitchell, D. M., Seviour, W. & Wright, C. 2020. Tracking the stratosphere‐to‐surface impact of Sudden Stratospheric Warmings. JGR Atmospheres. https://doi.org/10.1029/2020JD033881
Mitchell, D. M., Allen, M., Ebi, K., Gasparrini, C., Heaviside, C., Lo, Y. T. E. & Vicedo-Cabrera, A. 2020. Concerns over calculating injury-related deaths associated with temperature. Nature Medicine. https://doi.org/10.1038/s41591-020-1113-z
Walker, E., Mitchell, D. M. & Seviour, W. 2020. The numerous approaches to tracking extratropical cyclones and the challenges they present. Weather. https://doi.org/10.1002/wea.3861
Otto, F.E.L.,…James, R. (11th) et al. 2020. Toward an Inventory of the Impacts of Human-Induced Climate Change. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-20-0027.1
Ballinger, T., Hanna, E., Hall, R. et al. 2020. The role of blocking circulation and emerging open water feedbacks on Greenland cold‐season air temperature variability over the last century. International Journal of Climatology. https://doi.org/10.1002/joc.6879
Mitchell, D. M., Lo, Y. T. E., Seviour, W., Haimberger, L. & Polvani, L. 2020. The vertical profile of recent tropical temperature trends: Persistent model biases in the context of internal variability. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab9af7
Vosper, E., Mitchell, D. M. & Emanuel, K. 2020. Extreme Hurricane Rainfall affecting the Caribbean mitigated by the Paris Agreement Goals. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab9794
Lo, Y. T. E., Mitchell, D. M., Bohnenstengel, S., Collins, M., Hawkins, E., Hegerl, G., Joshi, M. & Stott, P. 2020. UK Climate Projections: Summer daytime and night-time urban heat island changes in England’s major cities. Journal of Climate. https://doi.org/10.1175/JCLI-D-19-0961.1
Takeshima, A., Kim, H., Shiogama, H., Lierhammer, L., Scinocca, J., Seland, O. & Mitchell, D. M. 2020. Global aridity changes due to differences in surface energy and water balance between 1.5°C and 2°C warming. Environmental Research Letters. https://iopscience.iop.org/article/10.1088/1748-9326/ab9db3/meta
James, R. et al. 2020. Coupled Climate Model Simulation of Tropical–Extratropical Cloud Bands over Southern Africa.
Journal of Climate. https://doi.org/10.1175/JCLI-D-19-0731.1
Hanna, E., Cappelen, J., Fettweis, X., Mernild, S., Mote, T., Mottram, R., Steffen, K., Ballinger, T. & Hall, R. 2020. Greenland surface air temperature changes from 1981 to 2019 and implications for ice‐sheet melt and mass‐balance change. International Journal of Climatology. https://doi.org/10.1002/joc.6771
Uhe, P., Mitchell, D. M., Bates, P., Allen, M., Betts, R., Huntingford, C., King, A., Sanderson, B. & Shiogama, H. 2020. Method-uncertainty is essential for reliable confidence statements of precipitation projections. AMS. https://doi.org/10.1088/1748-9326/ab10ee
Overland, J., Hall, R., Hanna, E., Karpechko, A., Vihma, T., Wang, M., Zhang, X. 2020. The Polar Vortex and Extreme Weather: The Beast from the East in Winter 2018. Atmosphere. https://doi.org/10.3390/atmos11060664
Jian, D., Ma, Z., Chen, L., Duan, J., Mitchell, D. M., Zheng, Z., Lv, M. & Zhang, H. 2020. Effects of 1.5 °C and 2 °C of Warming on Regional Reference Evapotranspiration and Drying: A Case Study of the Yellow River Basin, China. International Journal of Climatology. https://doi.org/10.1002/joc.6667
Shiogama, H., Hirata, R., Hasegawa, T., Fujimori, S., Ishizaki, N. Chatani, S., Watanabe, M., Mitchell, D. M. & Lo, Y. T. E. 2020. Historical and future anthropogenic warming effects on droughts, fires and fire emissions of CO2 and PM2.5 in Equatorial Asia when 2015-like El Nino events occur. Earth System Dynamics. https://doi.org/10.5194/esd-11-435-2020
Mechler, R.,…James, R. (6th) et al. Loss and Damage and limits to adaptation: recent IPCC insights and implications for climate science and policy. Sustainability Science. https://doi.org/10.1007/s11625-020-00807-9
Scott, R., Seviour, W. & Waugh, D. 2020. Forcing of the Martian polar annulus by Hadley cell transport and latent heating. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3786
Sharkey, J., Teanby, N., Sylvestre, M., Mitchell, D. M., Seviour, W., Nixon, C. & Irwin, P. 2020. Mapping the Zonal Structure of Titan’s Northern Polar Vortex. Icarus. https://doi.org/10.1016/j.icarus.2019.113441
Kennedy-Asser, A., Andrews, O., Mitchell, D. M. & Warren, R. 2020. Evaluating heat extremes in the UK Climate Projections (UKCP18). Environmental Research Letters. https://doi.org/10.1088/1748-9326/abc4ad
2019
James, R. et al. 2019. Attribution: How Is It Relevant for Loss and Damage Policy and Practice? Loss and Damage from Climate Change. Climate Risk Management, Policy and Governance. Springer, Cham. https://doi.org/10.1007/978-3-319-72026-5_5
Mechler, R.,…James, R. (20th) et al. 2019. Science for Loss and Damage. Findings and Propositions. Loss and Damage from Climate Change. Climate Risk Management, Policy and Governance. Springer, Cham. https://doi.org/10.1007/978-3-319-72026-5_1
van der Geest, K.,…James, R. (7th) et al. 2019. The Impacts of Climate Change on Ecosystem Services and Resulting Losses and Damages to People and Society. Loss and Damage from Climate Change. Climate Risk Management, Policy and Governance. Springer, Cham. https://doi.org/10.1007/978-3-319-72026-5_9
Gaupp, F., Hall, J., Mitchell, D. M. & Dadson, S. 2019. Increasing risks of multiple breadbasket failure under 1.5 and 2°C global warming. Agricultural Systems. https://doi.org/10.1016/j.agsy.2019.05.010
Vosper, E*., Walker, E*., Betts, R., Challinor, A., Fowler, H. & Mitchell, D. M. 2019. Building a UK Climate Impacts and Risk Assessment Community. Weather. https://doi.org/10.1002/wea.3592 (* Joint first authors)
Seviour, W., et al. 2019. The Southern Ocean sea surface temperature response to ozone depletion: A multi-model comparison. Journal of Climate. https://doi.org/10.1175/JCLI-D-19-0109.1
Uhe, P., Mitchell, D. M., Bates, P., Sampson, C., Smith, A. & Islam, A. 2019. Enhanced flood risk with 1.5C global warming in the Ganges-Brahmaputra-Meghna basin. ERL. https://doi.org/10.1088/1748-9326/ab10ee
Mitchell, D. M., Kornhuber, K., Huntingford, C. & Uhe, P. 2019. The day the 2003 European heatwave record was broken. The Lancet Planetary Health. https://doi.org/10.1016/S2542-5196(19)30106-8
Lo, Y. T. E., Mitchell, D. M., Gasparrini, A., Vicedo-Cabrera, A., Ebi, K., Frumhoff, P., Millar, R., Roberts, W., Sera, F., Sparrow, S., Uhe, P. & Williams, G. 2019. Increasing mitigation ambition to meet the Paris Agreement’s temperature goal avoids substantial heat-related mortality in U.S. cities. Science Advances. http://doi.org/10.1126/sciadv.aau4373
Huntingford, C., Mitchell, D. M., Kornhuber, K., Coumou, D., Osprey, S. & Allen, M. 2019. Assessing changes in risk of amplified planetary waves in a warming world. Atmospheric Science Letters. https://doi.org/10.1002/asl.929
Tamoffo, A.T.,…James, R. (4th) et al. 2019. Process-oriented assessment of RCA4 regional climate model projections over the Congo Basin under 1.5C and 2C global warming levels: influence of regional moisture fluxes. Climate Dynamics. https://doi.org/10.1007/s00382-019-04751-y
Marthews, T., Jones, R., Dadson, S., Otto, F., Mitchell, D. M., Guillod, B. & Allen, M. 2019. The Impact of Human‐Induced Climate Change on Regional Drought in the Horn of Africa. JGR Atmospheres. https://doi.org/10.1029/2018JD030085
Madakumbura, G.,…Mitchell, D. M. (8th) et al. 2019. Event-to-event intensification of hydrologic cycle in 1.5 and 2 °C warmer worlds. Nature. https://doi.org/10.1038/s41598-019-39936-2
2018
Shepherd, T.G.,…James, R. (9th) et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change. https://doi.org/10.1007/s10584-018-2317-9
Huggel, C.,…James, R. (4th) et al. 2018. Loss and Damage in the mountain cryosphere. Regional Environmental Change. https://doi.org/10.1007/s10113-018-1385-8
Vicedo-Cabrera, A.,…Mitchell, D. M. (7th) et al. 2018. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Climatic Change. https://doi.org/10.1007/s10584-018-2274-3
Desbiolles, F.,…James, R. (4th) et al. 2018. Upscaling impact of wind/sea surface temperature mesoscale interactions on southern Africa austral summer climate. International Journal of Climatology. https://doi.org/10.1002/joc.5726
Liu, W.,…Mitchell, D. M. (4th) et al. 2018. Global Freshwater availability below normal conditions and population impact under 1.5˚C and 2˚C stabilization scenarios. Geophysical Research Letters. http://doi.org/10.1029/2018GL078789
King, A., Donat, M., Lewis, S., Henley, B., Mitchell, D. M., Stott, P., Fischer, E. & Karoly, D. 2018. Reduced heat exposure by limiting global warming to 1.5 °C. Nature Climate Change. https://doi.org/10.1038/s41558-018-0191-0
Mitchell, D. M., et al. 2018. Extreme heat-related mortality avoided under Paris Agreement goals. Nature Climate Change. https://doi.org/10.1038/s41558-018-0210-1
Baker, H.,…Mitchell, D. M. (6th), et al. 2018. Higher CO2 concentrations increase extreme event risk in a 1.5 °C world. Nature Climate Change. https://doi.org/10.1038/s41558-018-0190-1
Hosking, J., MacLeod, D., Phillips, T., Holmes, C., Watson, P., Shuckburgh, E. & Mitchell, D. M. 2018. Changes in European wind energy generation potential within a 1.5°C warmer world. Environmental Research Letters. https://doi.org/10.1088/1748-9326/aabf78
Pokam Mba, W.,…James, R (5th) et al. 2018. Consequences of 1.5 °C and 2 °C global warming levels for temperature and precipitation changes over Central Africa. Environmental Research Letters. https://doi.org/10.1088/1748-9326/aab048
Li, C.,…Mitchell, D. M. (13th) et al. 2018. Midlatitude atmospheric circulation responses under 1.5°C and 2°C warming and implications for regional impacts. Earth System Dynamics. http://doi.org/10.5194/esd-9-359-2018
Mitchell, D. M., et al. 2018. The myriad challenges of the Paris Agreement. Philosophical Transactions of The Royal Society A. https://doi.org/10.1098/rsta.2018.006
Seneviratne, S.,…Mitchell, D. M. (16th) et al. 2018. Climate extremes, land– climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions of The Royal Society A. https://doi.org/10.1098/rsta.2016.0450
Christidis, N., Mitchell, D. M. & Stott, P. 2018. 2019. Anthropogenic climate change and heat effects on health. International Journal of Climatology. https://doi.org/10.1002/joc.6104
Wehner, M.,…Mitchell, D. M. (3rd) et al. 2018. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth System Dynamics. https://doi.org/10.5194/esd-9-299-2018
Hirsch, A.,…Mitchell, D. M. (10th), et al. 2018. Biogeophysical Impacts of Land‐Use Change on Climate Extremes in Low‐Emission Scenarios: Results From HAPPI‐Land. Earth’s Future. https://doi.org/10.1002/2017EF000744
Zülicke, C., Becker, E., Matthias, V., Peters, D., Schmidt, H., Liu, H., Ramos, L. & and Mitchell, D. M. 2018. Coupling of Stratospheric Warmings with Mesospheric Coolings in Observations and Simulations. J. Climate. https://doi.org/10.1175/JCLI-D-17-0047.1
James, R. et al. 2018. Evaluating Climate Models with an African Lens. Environmental Research Letters. https://journals.ametsoc.org/view/journals/bams/99/2/bams-d-16-0090.1.xml
Grose, M., Black, B., Risbey, J., Uhe, P., Hope, P., Haustein, K. & and Mitchell, D. M. 2018. Severe Frosts in Western Australia in September 2016. American Meteorological Society. https://doi.org/10.1175/BAMS-D-17-0088.1
Hoegh-Guldberg, O.,…Mitchell, D. M. (contributing author), et al. 2018. Chapter 3 – Impacts of 1.5°C of Global Warming on Natural and Human Systems. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter3_Low_Res.pdf
2017
Lewis, S., King, A. & Mitchell, D. M. 2017. Australia’s Unprecedented Future Temperature Extremes Under Paris Limits to Warming. Geophysical Research Letters. https://doi.org/10.1002/2017GL074612
Boyd, E., James, R., Jones, R. et al. 2017. A typology of loss and damage perspectives. Nature Climate Change. https://doi.org/10.1038/nclimate3389
White, C.J.,…James, R. (13th) et al. 2017. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorological Applications. https://doi.org/10.1002/met.1654
James, R. et al. 2017. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. Wiley Interdisciplinary Reviews: Climate Change. https://doi.org/10.1002/wcc.457
King, A., Knutti, R., Uhe, P., Mitchell, D. M., Lewis, S., Arblaster, J. & Freychet, N. 2017. On the linearity of local and regional temperature changes from 1.5°C to 2°C of global warming. Journal of Climate. https://doi.org/10.1175/JCLI-D-17-0649.1
Lewis, S., King, A., Perkins-Kirkpatrick, S. & Mitchell, D. M. 2017. Regional hotspots of temperature extremes under 1.5°C and 2°C of global mean warming. Weather and Climate Extremes. http://doi.org/10.1016/j.wace.2019.100233